Faculty Directory
  • GONG Pan

  • Associate Professor
  • Phone:(+86) 27-87543491
  • E-mail:pangong@hust.edu.cn
  • Academic Areas:
  • Research Interests:Bulk Metallic Glasses, High Entropy Alloys, Metal Plastic Forming, Powder Sintering



Academic Degrees

PhD, 2013, School of Materials Science and Engineering, Tsinghua University, Beijing, China;

Master, 2008, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Bachelor, 2006, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

Professional Experience

Associate Professor (2016-present); School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China;

Postdoctoral Research (2013-2015); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA.

Selected Publications

[1] Y.F. Ma, X.F. Tang, X. Wang, M. Zhang, H.E. Hu, P. Gong*, X.Y. Wang. Preparation and mechanical properties of tungsten-particle-reinforced Zr-based bulk-metallic-glass composites. Materials Science and Engineering A, 2021, 815: 141312.

[2] P. Gong, G. Yin, Z. Jamili-Shirvan, H.Y. Ding, X.Y. Wang*, J.S. Jin*, Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high entropy bulk metallic glass. Materials Science and Engineering A, 2020, 797: 140078.

[3] H.P. Ding, Z.K. Zhao, J.S. Jin, L. Deng, P. Gong*, X.Y. Wang*. Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering. Journal of Alloys and Compounds, 2017, 688: 174-179.

[4] P. Gong, F.W. Li, L. Deng, X.Y. Wang*, J.S. Jin*. Research on nano-scratching behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Journal of Alloys and Compounds, 2020, 817: 153240.

[5] P. Gong, H.C. Kou, S.B. Wang, L. Deng, X.Y. Wang*, J.S. Jin*. Research on thermoplastic formability and nanomoulding mechanism of lightweight Ti-based bulk metallic glasses. Journal of Alloys and Compounds, 2019, 801: 267-276.

[6] P. Gong, S.B. Wang, Z. Liu, W. Chen, N. Li, X.Y. Wang*, K.F. Yao. Lightweight Ti-based bulk metallic glasses with superior thermoplastic formability. Intermetallics, 2018, 98: 54-59.

[7] . Gong, J. Jin, L. Deng, S. Wang, J. Gu, K.F. Yao, X.Y. Wang*. Room temperature nanoindentation creep behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Materials Science and Engineering A, 2017, 688: 174-179.

[8] P. Gong, S. Wang, F. Li, X.Y. Wang*. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass. Physica B: Condensed Matter, 2017, 530: 7-14.

[9] P. Gong, X. Wang, K.F. Yao. Review on the research and development of Ti-based bulk metallic glasses. Metals, 2016, 6(11): 264.

[10] P. Gong, X. Wang, K.F. Yao. Effects of alloying elements on crystallization kinetics of Ti-Zr-Be bulk metallic glass. Metals, 2016, 51(11): 5321-5329.

[11] P. Gong, S.F. Zhao, H.Y. Ding, K.F. Yao, X. Wang. Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research, 2015, 30(18): 2772-2782.

[12] P. Gong, S.F. Zhao, X. Wang, K.F. Yao. Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry. Applied Physcs A: Materials Science & Processing, 2015, 120:145-153.

[13] P. Gong, K.F. Yao, S.F. Zhao. Cu alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. Journal of Thermal Analysis and Calorimetry, 2015, 121:697-704.

[14] P. Gong, K.F. Yao, H.Y. Ding. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass. Materials Letters, 2015, 156: 146-149.

[15] P. Gong, X. Wang, Y. Shao, N. Chen, X. Liu, K.F. Yao. A Ti-Zr-Be-Fe-Cu bulk metallic glass with superior glass-forming ability and high specific strength. Intermetallics, 2013, 43: 177-181.

[16] P. Gong, K.F. Yao, X. Wang, Y. Shao. A new centimeter-sized Ti-based quaternary bulk metallic glass with good mechanical properties. Advanced Engineering Materials, 2013, 15(8): 691-696.

[17] P. Gong, X. Wang, Y. Shao, N. Chen, K.F. Yao. Ti-Zr-Be-Fe quaternary bulk metallic glasses designed by Fe alloying. Science China Physics, Mechanics and Astronomy, 2013, 56(11): 2090-2097.

[18] P. Gong, K.F. Yao, H.Y. Ding. Centimeter-sized Ti-based quaternary bulk metallic glass prepared by water quenching. International Journal of Modern Physics B, 2013, 27(18): 1350087.

[19] P. Gong, K.F. Yao, Y. Shao. Effects of Fe addition on glass-forming ability and mechanical properties of Ti-Zr-Be metallic glass. Journal of Alloys and Compounds, 2012, 536: 26-29.

[20] P. Gong, K.F. Yao, Y. Shao. Lightweight Ti-Zr-Be-Al bulk metallic glasses with improved glass-forming ability and compressive plasticity. Journal of Non-Crystalline Solids, 2012, 358: 2620-2625.

[21] P. Gong, K.F. Yao, X. Wang, Y. Shao. Centimeter-sized Ti-based bulk metallic glass with high specific strength. Progress in Natural Science: Materials International, 2012, 22(5): 401-406.

[22] S.F. Zhao, P. Gong, J.F. Li, N. Chen, K.F. Yao. Quaternary Ti-Zr-Be-Ni bulk metallic glasses with large glass-forming abilty. Materials & Design, 2015, 85: 564-573.

[23] Z. Fu, P. Gong. The study for stability of closed-loop control system based on multiple-step incremental air-bending forming of sheet metal. The International Journal of Advanced Manufacturing Technology, 2014, 71(1-4): 357-364.

[24] S.B. Qiu, P. Gong, K.F. Yao. Work toughening effect in Zr41Ti14Cu12.5 -Ni10Be22.5 bulk metallic glass. Chinese Science Bulletin, 2011, 56: 3942-3947.

[25] S.F. Zhao, N. Chen, P. Gong, K.F. Yao. New centimeter-sized quaternary Ti-Zr-Be-Cu bulk metallic glasses with large glass forming ability. Journal of Alloys and Compounds, 2015, 647: 533-538.

[26] X. Liu, Y. Shao, P. Gong, K.F. Yao. Preparation of Fe-Ni-P-B metallic nano-ribbons. Materials Letters, 2013, 93: 103-106.

[27] X. Wang, Y. Shao, P. Gong, K.F. Yao. The effect of simulated thermal cycling on thermal and mechanical stability of a Ti-based bulk metallic glass. Journal of Alloys and Compounds, 2013, 575: 449-454.

[28] X. Wang, Y. Shao, P. Gong, K.F. Yao. Effect of thermal cycling on the mechanical properties of Zr41Ti14Cu12.5Ni10Be22.5 alloy. Science China Physics, Mechanics and Astronomy, 2012, 55(12): 2357-2361.

[29] Q. Li, J.F. Li, P. Gong, K.F. Yao, J.E. Gao, H.X. Li, Formation of bulk magnetic ternary Fe80P13C7 glassy alloy. Intermetallics, 2012, 26: 62-65.

[30] F. Han, J.H. Mo, P. Gong, M. Li. Method of closed loop springback compensation for incremental sheet forming process. Journal of Central South University of Technology, 2011, 18(5): 1509-1517.

[31] S.B. Qiu, K.F. Yao, P. Gong. Effects of crystallization fraction on mechanical properties of Zr-based metallic glass matrix composites. Science China Physics, Mechanics and Astronomy, 2010, 53(3): 1-6.

[32] Z. Fu, J. Mo, F. Han, P. Gong. Tool path correction algorithm for single-point incremental forming of sheet metal. The International Journal of Advanced Manufacturing Technology, 2013, 64: 1239-1248.

[33] Z. Fu, F. Han, J. Mo, P. Gong. Springback compensation of multiple-step incremental air-bending forming of sheet-metal. Journal of Huazhong University of Science and Technology, 2010, 38(5): 105-108. (in Chinese)

[34] Z. Fu, J. Mo, P. Gong, W. Zhang, Z. Li, K. Huang. Mould correction for sheet-metal multi-step incremental air-bending forming based on closed-loop control and FEM simulation. International Journal of Mechanical Sciences, 2009, 51: 732-740.

[35] F. Han, J.H. Mo, P. Gong. Incremental sheet NC forming springback prediction using genetic neural network. Journal of Huazhong Univeisty of Science and Technology, 2008, 36(1): 121-124. (in Chinese)

[36] S.F. Zhao, Y. Shao, P. Gong, K.F. Yao. A centimeter-sized quaternary Ti-Zr-Be-Ag bulk metallic glass. Advances in Materials Science and Engineering, 2014, 192187.


Awards

2020: Young Scientist Awards, from Chinese Materials Research Society

Courses Taught

Equipmentand Automation of Materials Process

Stamping Technology and Die Design

Metal Precision Plastic Forming Technologies and Their Application

Project

National Natural Science Foundation of China:51601063

Address: 1037 Luoyu Road, Wuhan, Hubei, China; P.C: 430074

Tel: +86-27-87543676    Email: hansy@hust.edu.cn

©2017 Huazhong University of Science and Technology